
Whole Genome Assembly and Alignment 
Michael Schatz 
 
 
 
 
 
 
Nov 6, 2012 
SBU Graduate Genetics 



Outline 

1.  Assembly theory 
1.  Assembly by analogy 
2.  De Bruijn and Overlap graph 
3.  Coverage, read length, errors, and repeats 

2.  Genome assemblers 
1.  Celera Assembler 

3.  Whole Genome Alignment with MUMmer 

4.  Review 



Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 
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 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 
Model the assembly problem as a graph problem 



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 
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After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 



Milestones in Genome Assembly 

2000. Myers et al. 
1st Large WGS Assembly. 

Celera Assembler. 116 Mbp 

1995. Fleischmann et al. 
1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2010. Li et al. 
1st Large SGS Assembly. 
SOAPdenovo 2.2 Gbp 

1977. Sanger et al. 
1st Complete Organism 

5375 bp 

2001. Venter et al., IHGSC 
Human Genome 

Celera Assembler/GigaAssembler. 2.9 Gbp 

1998. C.elegans SC 
1st Multicellular Organism 

BAC-by-BAC Phrap. 97Mbp 

Like Dickens, we must computationally reconstruct a genome from short fragments 



Assembly Applications 
•  Novel genomes 

 

•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 



Assembling a Genome 

2. Construct assembly graph from overlapping reads 

…AGCCTAGACCTACAGGATGCGCGACACGT 

              GGATGCGCGACACGTCGCATATCCGGT… 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 



Why are genomes hard to assemble? 

1.  Biological:  
–  (Very) High ploidy, heterozygosity, repeat content 

2.  Sequencing:  
–  (Very) large genomes, imperfect sequencing 

3.  Computational:  
–  (Very) Large genomes, complex structure 

4.  Accuracy:  
–  (Very) Hard to assess correctness 
 



Ingredients for a good assembly 

Current challenges in de novo plant genome sequencing and assembly 
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243 

Coverage 

High coverage is required 
–  Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads 

–  Biased coverage will also fragment 
assembly 

Lander Waterman Expected Contig Length vs Coverage
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Read Length 

Reads & mates must be longer 
than the repeats 
–  Short reads will have false overlaps 

forming hairball assembly graphs 
–  With long enough reads, assemble 

entire chromosomes into contigs 

Quality 

Errors obscure overlaps 
–  Reads are assembled by finding 

kmers shared in pair of reads 
–  High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 



Typical contig coverage 
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1x Sequencing 



2x Sequencing 



3x Sequencing 



4x Sequencing 



5x Sequencing 



6x Sequencing 



7x Sequencing 



8x Sequencing 



Coverage and Read Length 
Idealized Lander-Waterman model 
•  Reads start at perfectly random 

positions 

•  Contig length is a function of 
coverage and read length 
–  Short reads require much higher 

coverage to reach same expected 
contig length 

•  Need even high coverage for 
higher ploidy, sequencing errors, 
sequencing biases 
–  Recommend 100x coverage 

Lander Waterman Expected Contig Length vs Coverage
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Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  



Two Paradigms for Assembly 

Short read assemblers 
•  Repeats depends on word length 
•  Read coherency, placements lost 
•  Robust to high coverage 

Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  

de#Bruijn#Graph#
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TAA 
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ATA 

Long read assemblers 
•  Repeats depends on read length 
•  Read coherency, placements kept 
•  Tangled by high coverage 
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Unitigging / Unipathing 

•  After simplification and correction, compress graph 
down to its non-branching initial contigs 
–  Aka “unitigs”, “unipaths”  
–  Unitigs end because of (1) lack of coverage, (2) errors, (3) repeats, and 

(4) heterozygosity 

Errors 



Errors in the graph 

(Chaisson, 2009) 

Clip Tips Pop Bubbles 
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Repeats and Read Length 

•  Explore the relationship between read length and contig N50 size 
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000 
–  Contig/Read length relationship depends on specific repeat composition 
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Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Yersinia pestis         
4.70Mbp 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21. 

Repeats 



Repetitive regions 

•  Over 50% of mammalian genomes are repetitive 
–  Large plant genomes tend to be even worse 
–  Wheat: 16 Gbp; Pine: 24 Gbp 29 

Repeat Type Definition / Example Prevalence 

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6 
CACACACACACACACACACA 

2% 

SINEs (Short Interspersed Nuclear 
Elements) 

Alu sequence (~280 bp) 
Mariner elements (~80 bp) 

13% 

LINEs (Long Interspersed Nuclear 
Elements) 

~500 – 5,000 bp 21% 

LTR (long terminal repeat) 
retrotransposons 

Ty1-copia, Ty3-gypsy, Pao-BEL 
(~100 – 5,000 bp) 

8% 

Other DNA transposons 3% 

Gene families & segmental duplications 4% 



Repeats and Coverage Statistics A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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Scaffolding 
•  Initial contigs (aka unipaths, unitigs) terminate at 

–  Coverage gaps: especially extreme GC regions 
–  Conflicts: sequencing errors, repeat boundaries 

•  Iteratively resolve longest, ‘most unique’ contigs 
–  Both overlap graph and de Bruijn assemblers initially collapse 

repeats into single copies 
–  Uniqueness measured by a statistical test on coverage 



N50 size 
Def: 50% of the genome is in contigs larger than N50 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



Genome assembly with the  
Celera Assembler 



Celera Assembler 

1.  Pre-overlap 
–  Consistency checks 
 

2.  Trimming 
–  Quality trimming & partial overlaps 

3.  Compute Overlaps 
–  Find high quality overlaps 

4.  Error Correction 
–  Evaluate difference in context of 

overlapping reads 

5.  Unitigging 
–  Merge consistent reads 

6.  Scaffolding 
–  Bundle mates, Order & Orient 

7.  Finalize Data 
–  Build final consensus sequences 

 

http://wgs-assembler.sf.net 



Hybrid Sequencing 

Illumina 
Sequencing by Synthesis 

 
High throughput (60Gbp/day) 

High accuracy (~99%) 
Short reads (~100bp) 

Pacific Biosciences 
SMRT Sequencing 

 
Lower throughput (600Mbp/day) 

Lower accuracy (~85%) 
Long reads (2-5kbp+) 

  



SMRT Sequencing Data 
TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG!
||||||||||||||||||||||||| ||||||| |||||||||||| |||!
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG!
!
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG!
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||!
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG!
!
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG!
| |||||| |||| ||  ||||||||||||||||||||||||||||||||!
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG!
!
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA!
| ||||||| |||||||||||||| || ||    |||||||||| |||||!
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA!
!
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA!
 ||||||   ||     |||||||| || |||||||||||||| || |||!
GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA!
!
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT!
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||!
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT!
!
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA!
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||!
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA!
!
ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG!
||||||| |||||||||  |||||| ||||| ||||||||||||||||||!
ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG!
!

Sample of 100k reads aligned with BLASR requiring >100bp alignment 
Average overall accuracy: 83.7%, 11.5% insertions, 3.4% deletions, 1.4% mismatch 

Yeast  
(Pre-release Chemistry / 2010) 

 

65 SMRT cells  
734,151 reads after filtering 

Mean: 642.3 +/- 587.3  
Median: 553 Max: 8,495 
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1.  Correction Pipeline 
1.  Map short reads to long reads 
2.  Trim long reads at coverage gaps 
3.  Compute consensus for each long read 

2.  Error corrected reads can be easily assembled, aligned 

PacBio Error Correction 

Hybrid error correction and de novo assembly of single-molecule sequencing reads. 
Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280 

http://wgs-assembler.sf.net 



Error Correction Results 

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina 



SMRT-Assembly Results 

Hybrid assembly results using error corrected PacBio reads 
Meets or beats Illumina-only or 454-only assembly in every case 



Improved Gene Reconstruction 

Scale
chr1A:

RepeatMasker

200 kb taeGut1
25400000 25500000 25600000 25700000

Illumina

454

454-PBcR

454-PBcR-Illumina
Assembly from Fragments

RefSeq Genes

GC Percent in 5-Base Windows

Repeating Elements by RepeatMasker

FOXP2
GC Percent

FOXP2 assembled on a single contig 



Transcript Alignment 

•  Long-read single-molecule sequencing has potential to directly 
sequence full length transcripts 
–  Raw reads and raw alignments (red) have many spurious indels inducing 

false frameshifts and other artifacts 
–  Error corrected reads almost perfectly match the genome, pinpointing 

splice sites, identifying alternative splicing 

•  New collaboration with Gingeras Lab looking at splicing in human 



Assembly Summary 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

•  Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  
–  Extensive error correction is the key to getting the best assembly possible 

from a given data set 

•  Watch out for collapsed repeats & other misassemblies 
–  Globally/Locally reassemble data from scratch with better parameters & 

stitch the 2 assemblies together 



Whole Genome Alignment 
with MUMmer 

 

Slides Courtesy of Adam M. Phillippy 
amp@umics.umd.edu 

 



Goal of WGA 
•  For two genomes, A and B, find a mapping from 

each position in A to its corresponding 
position in B 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 



Not so fast... 
•  Genome A may have insertions, deletions, 

translocations, inversions, duplications or SNPs 
with respect to B (sometimes all of the above) 

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA 



WGA visualization 
•  How can we visualize whole genome alignments? 

•  With an alignment dot plot 
–  N x M matrix 

•  Let i = position in genome A 
•  Let j = position in genome B 
•  Fill cell (i,j) if Ai shows similarity to Bj 

–  A perfect alignment between A and B would completely fill 
the positive diagonal 
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SV Types 

•  Different structural 
variation types / 
misassemblies will be 
apparent by their 
pattern of breakpoints 

•  Most breakpoints will 
be at or near repeats 

•  Things quickly get 
complicated in real 
genomes 

http://mummer.sf.net/manual/ 
AlignmentTypes.pdf 



Seed-and-extend with MUMmer 
 How can quickly align two genomes? 

 

1.  Find maximal-unique-matches (MUMs) 
!  Match: exact match of a minimum length 
!  Maximal:  cannot be extended in either direction without a mismatch 
!  Unique 

!  occurs only once in both sequences (MUM) 
!  occurs only once in a single sequence (MAM) 
!  occurs one or more times in either sequence (MEM) 

2.  Cluster MUMs 
!  using size, gap and distance parameters 

3.  Extend clusters 
!  using modified Smith-Waterman algorithm 



Fee Fi Fo Fum, 
is it a MAM, MEM or MUM? 

R 

Q 

MUM : maximal unique match 
MAM : maximal almost-unique match 
MEM : maximal exact match 



Seed and Extend  
visualization 

R 

Q 

FIND all MUMs 
CLUSTER consistent MUMs 
EXTEND alignments 



WGA example with nucmer 
•  Yersina pestis CO92 vs. Yersina pestis KIM 

–  High nucleotide similarity, 99.86%, but extensive reshuffling 
–  High repeat content 

 
nucmer –maxmatch CO92.fasta KIM.fasta 
-maxmatch  Find maximal exact matches (MEMs) 
 
delta-filter –m out.delta > out.filter.m 
-m  Many-to-many mapping 
 
show-coords -r out.delta.m > out.coords 
-r  Sort alignments by reference position 
 
dnadiff out.delta.m 
Construct catalog of sequence variations 
 
mummerplot --large --layout out.delta.m 
--large   Large plot 
--layout Nice layout for multi-fasta files 





Review 



Sequencing 

1.  Name 3 biological questions that can be answered using 
sequencing 

2.  Describe the overall process for identifying mutations in a 
genome using sequencing 
–  Identifying de novo mutations 
–  Measuring gene expression*** 

3.  Suppose it takes 1000 hours to match 100M reads using the 
brute force algorithm against the human genome (3GB), how 
long would it take to search the barley genome (~6GB)? 
–  wheat genome (~18GB), or pine tree genome (~24GB)? 
–  Supposes it take 10 hours using binary search against human, how long would it 

take for barley, wheat, or the pine tree? 
 



Alignment 

1.  How many times do we expected GATTACA or GATTACA*2 
or GATTACA*3 to be in the human genome? 
1.  In the barley, wheat or pine tree genomes? 

2.  What is the suffix array for HURRICANESANDY 
1.  Describe how I would find all occurrences of SAND in that suffix array 

3.  Describe how to find all occurrences of GATTACA in the 
human genome allowing at most 1 mismatch 

4.  What role do de novo mutations play in autism? 



Assembly 
1.  Describe the overall process of genome assembly 

2.  What are the necessary data characteristics for a 
good genome assembly, and explain why they are 
necessary 

3.  Draw the de Bruijn graph using k=1 of the reads 
AR, BR, CR, RB, RC, RD and count the number of 
Eulerian paths 

4.  Draw the dot plot of GATTACA against 
GATTTTACA 



Thank You! 
http://schatzlab.cshl.edu/ 


